

Report ID 2020-W17 -Sot23

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/20/12147

Analog, MEMS & Sensors (AMS)

Introduction of a new Assembly and Test location (TSHT China) for products assembled in SOT23 5L package

WHAT:

Progressing on activities related to process modernization and quality improvement, ST is pleased to announce the introduction of TSHT/China as an added subcontractor for Assy and Test & Finishing activities for some products assembled in our SOT23 5L package. We already released in July 2017 the PCN10331 and 10454 announcing this new plant. This new PCN is just to enlarge the list of impacted products.

The list of test vehicles used for the validation is listed here below.

Commercial Product	Current Finished Good	Current Assy & TnF Plant	Added Finished Good	Added Assy & TnF Plant
LD2981CM33TR	LD2981CM33TR\$2V	Carsem	LD2981CM33TR\$1R	TSHT
LDK120M-R	LDK120M-R\$3V	Carsem	LDK120M-R\$1R	TSHT

Dedicated engineering trials and test vehicles have been defined to validate the change.

WHY:

The purpose of the introduction of TSHT for both Assy and Test & Finishing activities for the here above listed commercial products is to further improve the rationalization of our manufacturing assets and provide a better support to our customers by enhancing the manufacturing process for higher volume production.

HOW:

•The qualification is based on Test vehicle representatives by using internal ST rule for changes.

WHEN:

The transfer set will be implemented in Q2/2020 in TSHT.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets.

There is -as well- no change in the packing process or in the standard delivery quantities. Shipments may start earlier with the customer's written agreement.

Reliability Qualification plan New Subcontractor SOT23 in SC-Tianshui Huatian-China (TSHT) TVs: LDK120 (UI69) & LD2981(KR33)

General In	formation	l	_ocations
Product Lines	UI69	Wafer fab	CTM8
Product Description	200 mA low quiescent current very low noise LDO		
P/N	LDK120M-R\$4V	As a smithly intent	SC-Tianshui Huatian-China
Product Group	AMG (Analog & MEMS Group) General Purpose Analog & RF	Assembly plant	(TSHT)
Product division	Division POWER MANAGEMENT	Reliability Lab	Catania Reliability LAB
Package	SOT23 5L - 1.0mil Pd-Cu		outania Honability END
Silicon Process technology	BCD6S		
	formation		_ocations
Product Lines	KR33	Wafer fab	Singapore 6
Product Description	Very Low Drop VREG @ 100mA 3.3 V		
P/N	LD2981ABM33TR\$3V	A	SC-Tianshui Huatian-China
Product Group	AMG (Analog & MEMS Group)	Assembly plant	(TSHT)
Product division	General Purpose Analog & RF Division POWER MANAGEMENT	Reliability Lab	Catania Reliability LAB
Package	SOT23 5L - 1.0mil Pd-Cu		Catania Nendbinty LAD
Silicon Process technology	BI20II		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	Jun-2017	7	Giuseppe Failla	Giovanni Presti	Final Report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLIC/	ABLE AND REFERENCE DOCUMENTS	9
2		ARY	
3		ILITY EVALUATION OVERVIEW	
	3.1 OE	BJECTIVES	9
	3.2 Co	ONCLUSION	9
4	DEVICE	CHARACTERISTICS	0
	4.1 DE	EVICE DESCRIPTION	0
	4.2 Co	ONSTRUCTION NOTE1	1
5		PLAN SUMMARY1	
	5.1 TE	EST PLAN AND RESULTS SUMMARY	2
6	ANNEXE	ES1	3
	6.1 TE	ESTS DESCRIPTION 1	3

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 **Objectives**

To qualify the SOT23 in the subcontractor SC-Tianshui Huatian-China (TSHT) In order to cover the FE/BE compatibility two TVs in different technologies have been chosen:

• TV1: LDK120M-R\$4V (UI69) diffused in BCD6S

• TV2: LD2981ABM33TR\$3V (KR33) diffused in BI20II.

BE Process To be qualified 3 different Lots + 2 different BE CLs for each Test Vehicle are requested

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime

<u>4</u> DEVICE CHARACTERISTICS

4.1 **Device description**

The LDK120 low drop voltage regulator provides 200 mA of maximum current from an input supply voltage in the range of 1.9 V to 5.5 V, with a typical dropout voltage of 100 mV. It is stabilized with a ceramic capacitor on the output.

The very low drop voltage, low quiescent current and low noise features make it suitable for low power battery powered applications. An enable logic control function puts the LDK120 in shutdown mode allowing a total current consumption lower than 1 μ A. The device also includes a short-circuit constant current limiting and thermal protection.

The LD2981 is a 100 mA fixed-output voltage regulator. The low-drop voltage and the ultra low quiescent current make them suitable for low noise, low power applications and in battery powered systems. The quiescent current in sleep mode is less than 1 µA when INHIBIT pin is pulled low. Shutdown logic control function is available on pin n° 3 (TTL compatible). This means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. The LD2981 is designed to work with low ESR ceramic capacitor. Typical applications are in cellular phone, palmtop/laptop computer, personal digital assistant (PDA), personal stereo, camcorder and camera.

4.2 Construction note

	LDK120M-R\$4V (UI69)	LD2981ABM33TR\$3V (KR33)			
Wafer/Die fab. information					
Wafer fab manufacturing location	CT8	AMK6			
Technology	BCD6S	BI20II			
Die finishing back side	RAW SILICON	LAPPED SILICON			
Die size	782 x 736 um	1470 x 990 um			
Bond pad metallization layers	Ti/AlCu/TiNARC	AlSi			
Passivation type	TEOS/SiN/Polyimide	P-Vapox/Nitride/Polyimide(PIQ)			
Assembly information					
Assembly site	SC-Tianshui Huatian-China (TSHT)				
Package description	SOT 23	3 5L			
Molding compound	Epo>	(y			
Frame	SOT235 A194 (52X72) -16P				
Die attach process	GLUE				
Wires bonding materials/diameters	1.0mil Pd Cu				
Lead finishing process	Pure Tin Platin	ng Sn 100%			

5 TESTS PLAN SUMMARY

5.1 Test plan and results summary

Test	PC	Std ref.	Conditions	Steps			SS		
Test	FC	Stu rei.	Conditions	Steps	Lot 1	Lot 2	Lot 3	Lot 1-CL	Lot 1-C
Die Ori	ente	d Tests (*)						LL parameter	HH paramete
		JESD22		168 H	0/77				
HTOL		A-108	Tj = 125°C, V= Vbias +7V	500 H	0/77				
		A-100		1000 H	0/77				
		IECD00		168 H	0/25	0/25	0/25	0/25	0/25
HTSL		JESD22 A-103	Ta = 150°C	500 H	0/25	0/25	0/25	0/25	0/25
		A-105		1000 H	0/25	0/25	0/25	0/25	0/25
Packag	je Or	iented Tests	s (*)						
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times	Final	pass	pass	pass	pass	pass
AC	Υ	JESD22 A-102	Pa=2Atm / Ta=121°C	96 h	0/25	0/25	0/25		
		150000	150500	100cy	0/25	0/25	0/25	0/25	0/25
TC	Y	JESD22 A-104	Ta = -65°C to 150°C	200cy	0/25	0/25	0/25	0/25	0/25
		A-104		500 cy	0/25	0/25	0/25	0/25	0/25
		150000		168 H	0/25	0/25	0/25		
THB	Y	JESD22	Ta = 85°C, RH = 85%, Bias +5,5V	500 H	0/25	0/25	0/25		
	A-101			1000 H	0/25	0/25	0/25		
Other T	ests								
ESD		JESD22-C101	CDM	500V 750V corner pins	Pass				
CA			Construction Analysis		Pass				

TV1: LDK120M-R\$4V (UI69)

TV2: LD2981ABM33TR\$3V (KR33)

Test	PC	Std ref.	Conditions	Steps			SS		
Test	FC	Stullet.	Conditions	Steps	Lot 4	Lot 5	Lot 6	Lot 4-CL	Lot 4-CL
Die Ori	ente	d Tests						LL parameter	HH parameter
		JESD22		168 H	0/77				
HTOL		A-108	Tj = 125°C, V= Vbias +20V	500 H	0/77				
		A-100		1000 H	0/77				
		JESD22		168 H	0/25	0/25	0/25	0/25	0/25
HTSL		A-103	Ta = 150°C	500 H	0/25	0/25	0/25	0/25	0/25
		A-105		1000 H	0/25	0/25	0/25	0/25	0/25
Packag	e O	riented Tests	3						
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times	Final	pass	pass	pass	pass	pass
AC	Υ	JESD22 A-102	Pa=2Atm / Ta=121°C	96 h	0/25	0/25	0/25		
		IE O D O O		100cy	0/25	0/25	0/25	0/25	0/25
TC	Y	JESD22 A-104	Ta = -65°C to 150°C	200cy	0/25	0/25	0/25	0/25	0/25
		A-104		500 cy	0/25	0/25	0/25	0/25	0/25
		150500		168 H	0/25	0/25	0/25		
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, Bias +16V	500 H	0/25	0/25	0/25		
		A-101		1000 H	0/25	0/25	0/25		
Other T	ests								
ESD		JESD22-C101	CDM	500V 750V corner pins	pass				

12

6 ANNEXES

6.1 **Tests Description**

Test name	Description	Purpose		
Die Oriented				
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating con- dition in an accelerated way. The typical failure modes are related to, sili- con degradation, wire-bonds degradation, ox- ide faults.		
HTRB High Temperature Reverse Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating con- dition in an accelerated way. To maximize the electrical field across either		
HTFB / HTGB High Temperature Forward (Gate) Bias	max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.		
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms acti- vated by high temperature, typically wire- bonds solder joint ageing, data retention faults, metal stress-voiding.		
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.		
Package Oriented				
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" ef- fect and delamination.		
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.		
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials in- teracting in the die-package system. Typical failure modes are linked to metal displace- ment, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.		

Report ID 2020-W17 -Sot23

Test name	Description	Purpose	
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materi- als interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.	
THB Temperature Humi- dity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.	
Other			
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.	
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Re- moving the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.	